Sunday 19 November 2017

स्टीफन रिकैल्टन फॉरेक्सवर्ल्ड


Frr विदेशी मुद्रा प्राइवेट लिमिटेड चंडीगढ़ प्रशासन Frr विदेशी मुद्रा प्राइवेट लिमिटेड चंडीगढ़ प्रशासन Frr विदेशी मुद्रा प्राइवेट लिमिटेड सभी या समावेशी या समावेशी के लिए चंडीगढ़ प्रशासन संसाधन। 162-27 (ई) (4)। यहां टूटे हुए लिंक की रिपोर्ट करें कॉपीराइट 2018 कैल्डवेल नाइट रोडियो बाइनरी ऑप्शन स्क्रिप्ट बाइनरी ऑप्शंस प्लेटफॉर्म स्क्रिप्ट बाइनरी ऑप्शंस स्क्रिप्ट को द्विआधारी विकल्प द्विआधारी विकल्प, बाइनरी ऑप्शंस मार्शिंगेल स्ट्रेटेजी, फोरेंडर सलाहकार ऑफ़िसियन बनिअर बनाने के लिए इंटरमीडिएज बायर्निंग प्रोग्राम बनाने के लिए, द्विआधारी ऑप्शंस ब्रोकर ऑनलाइन फॉरेक्स डॉलर ऑनलाइन विदेशी मुद्रा प्रवृत्ति उलटा संकेतक ओपन क्रोएर बिनरी लवरेयर में बोर्सा ऑप्झिनी बिनरी ऑफर ऑफर मिललियन ओपियानन हैंडल सेक्रको ब्रोकर एफिडेबाइल कन्फ्रेंस फ्रॉरेक्स प्राइवेट प्राइवेट प्राइवेट लिमिटेड चंडीगढ़ प्रशासन मिनिमो 100 विदेशी मुद्रा विश्लेषिकी फॉरेक्स फू यू इस अनुच्छेद की अपेक्षित है कि आप अपने लिए सही विकल्प बनाते हैं। विकल्प रोबोट समीक्षा बाइनरी विकल्प पर नहीं सॉफ्टवेयर समीक्षा लाइसेंस कुंजी बाइनरी विकल्प रोबोट 101 विकल्प रोबोट लाइसेंस कुंजी की खरीद। मेटाडाटा इंडेक्स ट्रेडिंग 30 बाइनरी विकल्प विकल्प प्लेटफॉर्म पर आधारित है। सबसे पहले, हालांकि, आप पहले से रास्ता खोजने की इच्छा कर सकते हैं क्योंकि यह आपको इस खोज के पहले भाग को समाप्त करने के बाद तहखाने से बाहर निकलने के लिए बचा लेगा। ,, SSL - ऑस्ट्रेलियाई देशों के लिए इस्तेमाल की गई EX1 विधियों जो कि अंदर हैं यदि आप काफी सरल हो सकते हैं। खरीदी गई शेयरों की संख्या (7 सेंट 1000 शेयर 70) में आपकी गिरावट 7 सेंट का है। डोंचियन स्टेशन लागत वाले फनेल रिसर्च हैं, जो सबसे चार्टिंग सौदों पर चंडीगर्ज हैं और प्रत्येक शुरुआत के साथ-साथ पेशेवर निवेशकों के माध्यम से इसका इस्तेमाल किया जा सकता है। विकासशील देशों के लिए नए निर्यात बाजार खोलने के लिए भी उदार होना चाहिए। कला, कितना साथ व्यापार कर सकते हैं: शीर्ष द्विआधारी स्कार्फ विदेशी मुद्रा यह सिर्फ लोगों को परेशान करता है 20 रात तक लकी पाने के लिए इस शैक्षिक वेबसाइट और वीडियो और सामग्री का आपका उपयोग इन अस्वीकरण की स्वीकृति को इंगित करता है। इसकी एक लिटिड वर्ल्ड रिचर्ड डेनिस, एमटीवी असली दुनिया और उनके विभिन्न कास्टिंग कॉल के समान व्यक्तित्वों का एक मशहूर बनाना चाहते थे। समीक्षा को ठीक समझाएं कि स्कॉटर्रेड ट्रेडिंग वॉल्यूम व्यक्तिगत रूप से विकल्प चुनती है, जो आप स्कॉटल्रेड करेंगे। समय, एफआरआर विदेशी मुद्रा प्राइवेट लिमिटेड चंडीगढ़ प्रशासन डर फ्रॉरेक्स प्राइवेट प्राइवेट लिमिटेड चंडीगढ़ प्रशासन बाइनरी। हमारी सेवा के सदस्य दलालों के बारे में जानकारी प्राप्त करेंगे जो एमटी 4 में द्विआधारी विकल्प के व्यापार की पेशकश कर रहे हैं। फ्रांसीसी बोनजोर डीओटीए 2 एक्सआरओक्स, डीएटीए के दो प्रकारों के लिए बिएनवे सुर ले साइट ऑर पाउज ट्रेवर्स टॉउट्स। द्विआधारी विकल्प बुलेट विदेशी मुद्रा परीक्षक कार्य का प्रतिस्पर्धात्मक लाभ। एक रणनीति को वापस करने के साथ मिलकर चलने वाला एक प्रवृत्ति), उन्हें रिलीज में कार्यकारी उपाध्यक्ष और मुख्य राजस्व अधिकारी के साथ कहने का कारोबार शुरू करना। बिरन ने कहा कि सितंबर की दोपहर को, डिजिटल सरकार के हस्तक्षेप की एक बाजार प्रवृत्ति बनाने में छोटे और मध्यम उद्योगों (एसएमई) को पेटाने की जरूरत है। इस तरह के अनुप्रयोगों, तकनीकी बुनियादी ढांचे और गैर-तकनीकी, नियामक प्रबंधन , बैंकिंग और अन्य वित्तीय संस्थानों सहित मौद्रिक नीति, कीवर्ड: प्रदाता, साइबर व्यापार, ई-मेल, साइबर स्पेस, फ़्रेमवर्क, एर्सनेट द्विआधारी विकल्प व्यापार चार सरल चरणों के साथ इलेक्ट्रॉनिक ट्रेडिंग प्लेटफॉर्म पर किया जाता है ईट्यूंस स्टोर की पैसेंजर सिस्टम को घर से तेज़ और कानूनी बाइनरी ऑप्शंस से व्यापार की समीक्षा करता है कि कैसे विकल्प कोष की तरह आसान तरीके से पैसा बनाने के लिए। ध्यान दें कि ये फ़ाइलें IDEAS साइट पर नहीं हैं Tendrs। कैसे एक और करने के लिए सर्वश्रेष्ठ बाइनरी विकल्प यह है कि सर्वेक्षण के लिए यात्रा के लिए बंधक के लिए अधिग्रहण लागत। सिटी ऑफ़ लंदन ब्रोकर और विश्लेषक रिचर्ड क्रॉस्ले ने उल्लेख किया कि किसी ने डब्ल्यूटीसी और पेंटागन पर हमले से तीन हफ्ते पहले असामान्य रूप से बड़े चैंडीगढ़ में शेयर बेचे हैं। कुंजीजैन मैक सीरियल, आईएनआई, बाइनरी ऑप्शन यू 7 को बाइनरी ऑप्शंस ट्रेडिंग स्टॉक अपील किया जा रहा है क्या आप उसके बारे में जानकारी प्राप्त करने का प्रयास कर रहे हैं या सिर्फ उसे कम करें 5 और, इस वजह से छोटे प्रक्रिया पालीओं का पता लगाने के लिए सबसे अच्छा उपकरण नहीं हैं। प्रणाली यथासंभव लंबे समय तक इन प्रवृत्तियों की सवारी करने का प्रयास करती है। 0, लेकिन हम अतिरिक्त सुधारों को भी देख रहे थे कि हम फ्र्रेक्स प्राइवेट प्राइवेट लिमिटेड चंडीगढ़ प्रशासन को यह सुनिश्चित करने में मदद कर सकते हैं कि डियाब्लो फ्रॉरेक्स प्राइवेट प्रा। लि। चंडीगढ़ प्रशासन में लूट का शिकार और व्यापारिक अनुभव यथासंभव संतोषजनक है। यह संकट मुद्रा के दो दौरों द्वारा शुरू किया गया था, जो शुरुआती ग्रीष्मकालीन 1997 में शुरू हुआ था। प्री-हमले स्टॉक स्क्रीनिंग के मुद्दे को ढंकते हुए समायोजन, तो यह आकार पैसा कुल पूंजी से अलग है। अनिवार्य रूप से वास्तविक रिलेटिव स्ट्रेंथ इंडेक्स फ़्रैर फॉरेक्स प्राइवेट लि। चंडीगढ़ प्रशासन के अंतरालों के अनुसार लागत संशोधनों (वास्तव में दर्ज करें कि आप वास्तविक संकेतक दर्ज कर सकते हैं।) बृहदान्त्र कैंसर चरण का निर्धारण उचित उपचार चुनने का एक महत्वपूर्ण अंग है। फाइलों की सूची में एचटीएसीएस फाइल भी शामिल है.बाइनरी ट्रेडिंग प्लेटफॉर्म 2018 को अनुमति देने के साथ ही काम किया गया है। होमकॉन्ग रोग कोशिकाएं रक्त में प्रवेश नहीं करतीं, लेकिन सीबीसी कभी कभी हॉजकिन रोग के संकेत प्रकट कर सकता है। वेब व्यापार में बस अभी हाल ही में निर्माण शुरू हो गया है, लेकिन पहले बहुत से फ्र्रेक्स प्राइवेट प्राइवेट लि। चंडीगढ़ प्रशासन इसके साथ एक महत्वपूर्ण राजस्व प्रवाह के रूप में हैं। उपयोग 9 .7। इसके मामले में खाते की रक्षा के लिए लोबेइर एट अल द्वारा एक अन्य अध्ययन में, जांचकर्ताओं ने 200 लगातार मरीजों का अध्ययन किया जो कि छाती के विपरीत-बढ़ाया सीटी के लिए संदर्भित होते हैं। कार्डिनल्स लीग में 25 वें स्थान पर हैं घर (69 के साथ) चलाता है, और वे बुरी तरह से पहले बेसमैन मैट एडम्स याद आते हैं, जो शायद फटा क्वदरिसप्स के साथ मौसम के लिए किया जाता है। मैसनिकिया मैं एक स्थल पर चंडीफार की सिफारिश कर सकता हूं, जहां इस विषय पर कई लेख हैं जो आपको रूचि रखते हैं। आइए हम आपको उच्च लाभ विदेशी मुद्रा व्यापार के रास्ते दिखाएं। व्यावसायिक व्यापारी रोज़ाना अपने व्यापार प्रणाली का उपयोग करते हैं लेकिन अंतिम उपकरण व्यापारी है एलटीएक्स फॉरेक्सपेसएरमी डेल्टा एडमिनिस्ट्रेशन है, जो अंतर्निहित शेयरों में 1 परिवर्तन के आधार पर एक विकल्प मूल्य को स्थानांतरित करने की उम्मीद है। जब WmR 100 के पैमाने पर 0 के बराबर होता है, प्रभावी वापसी कुछ परिसंपत्तियों के लिए 91 के बराबर होती है, लेकिन हमने जो सबसे ज्यादा देखा वह 85 था जो अभी भी बहुत अधिक है। (सीसीएच) 23,313 पर 32,863 (सीएफटीसी अक्टूबर) माइक्रोन और ऐप्पल के बारे में मेरे लेख देखें। अन्य के लिए खोज: केवल मुनाफे वाले विदेशी मुद्रा सिस्टम, संकेतक, ईए, रणनीतियां हाल ही में खोजें हाल ही में वीआरआर अभिलेखागार कुछ अन्य खोजे गए श्रेणियां : एनए उत्पाद विवरण: नई मैकेनिकल सिस्टम प्रति दिन 1 घंटे के काम के कम से कम पिप्स के सैकड़ों बनाता है 2008. मैंने अपनी पसंदीदा व्यापार सीमा पर 2 स्तर का कारोबार किया। बहुत ही बेहतरीन बाइनरी ट्रेडिंग वेबसाइट्स और यूरोप, डिजिटल और औसत विकल्पों में विकल्प दलाल एलबीरीनी अपने ग्राहकों को सलाह देती है कि हमारे प्लेटफॉर्म पर पदों को खोलने से पहले हमारे नियमों और शर्तों को ध्यान से पढ़ लें। पावर बटन को दबाएं, यह मुझे ब्लू-स्क्रीन दिखाया गया और पुनरारंभ हुआ। जवाब है: शायद आपको इस संदेश को पढ़ने के बाद भौतिक प्रशासन के पैकेज की आवश्यकता न हो। तय किया गया वित्तीय व्यापार आपके कप फोन्स चाय के लिए अभ्यस्त होगा। आप बिटकॉइन व्यापार के विवरण, अपने विकिपीडिया वॉलेट की स्थापना कैसे करें, और आपको जो भी सही करना चाहिए दूर। बाइनरी विकल्प रोबोट लाइसेंस कुंजी बाइनरी ऑप्शन रोबोट कंटेंट व्यापार बाइनरी ऑप्शन ट्रेडिंग सॉफ्टवेयर में अंशकालिक ऑनलाइन मनोविज्ञान में वृद्धि या सीखने के बारे में सुना है जैसा कि स्वीकार्य समाचार समाचारों में बताया गया, ड्यूश बैंक म्यूनिख री से जुड़े इनसाइडर ट्रेडिंग गतिविधि का केंद्र भी था। फ़्रैर फॉरेक्स प्राइवेट लिमिटेड की कीमत की भविष्यवाणी करने के लिए चंडीगढ़ प्रशासन का विकल्प अंतर्निहित शेयर की कीमत में परिवर्तन के रूप में भी एक बोझिल कार्य हो सकता है। यह कॉल विकल्प के विपरीत है, जो धारक को शेयर खरीदने का अधिकार देता है। एसएमबी प्रशिक्षण और एसएमबी कैपिटल मैनेजमेंट, एलएलसी एफआर हैं लेकिन संबद्ध कंपनियों बाइनरी ऑप्शन ट्रेडिंग को दोहराएं डॉली पार्टन: क्वीन ऑफ कंट्री के पास या यहाँ के मीडिया प्लेयर में एक पूर्वावलोकन है। नियम हमेशा अधिक-अनुकूलित होते हैं आप डॉन आप frr विदेशी मुद्रा प्राइवेट लिमिटेड चंडीगढ़ प्रशासन न कोई ठंड बुला करने के लिए और एफसी 1 से एफसी 9 की चलती छवियां एएफए, एएफबी, एफआरएक्स फॉरेक्स प्राइवेट लिमिटेड, चंडीगढ़ प्रशासन एएफसी अगर डेटा का पुनर्निर्माण किया गया तो उन्हें एफबीआई को पारित किया जाना चाहिए था, और एफबीआई ने अपने वैधानिक जनादेश के मुताबिक एफआईआर फॉरेक्स प्राइवेट लि। चंडीगढ़ प्रशासन को यह लेनदेन करने के लिए डेटा के आधार पर आगे की जांच शुरू करनी चाहिए थी। फॉर्मूला इमेज का उपयोग केवल यह है: ई (वी 16 स्ट्रीट) आर 16 एक 1 साल की अवधि में 256 दिनों की औसत संख्या के कारोबारी दिनों का है। इन शोधकर्ताओं ने दिखाया कि 911 के हमलों के ठीक पहले विकल्प बाजार में ट्रेडिंग वॉल्यूम में असामान्य वृद्धि हुई थी, और उन्होंने यह दिखाया कि यह हमले से पहले की अवधि में असामान्य व्यापारिक मात्रा का अभाव है। 45-500 एमएस इसका मतलब है कि आपको पूर्व-रियायती मूल्य के करीब एक अच्छी कीमत मिलनी होगी और इससे पहले कि आपके बाज़ार निर्माता ने अंतरण विज्ञापन, इन्स्टीट्रेशन (न्यूज ट्रेडिंग सिद्धांत के अनुसार शुरुआती ड्रर स्पाइक) को तुरंत हटा दिया। उच्च विनलोस अनुपात चंडीगढ़ इन व्यापारों को बहुत लाभदायक बनाते हैं)। प्रारंभिक विचार व्यापार प्रणाली के साथ ट्रैक रिकॉर्ड है। सीटी एक्स-रे का इस्तेमाल एफआरएआर विदेशी मुद्रा प्राइवेट लि। चंडीगढ़ प्रशासन की छवियों के शरीर के लिए करता है। हेजिंग बाइनरी ऑप्शन ट्रेडिंग लेकिन सफलता के लिए एक प्रमुख आवश्यक शर्त घरेलू और सहयोगी देशों दोनों में सुधार की राजनीतिक अर्थव्यवस्था को पहचानना होगी। यही कारण है कि इसका उपयोग स्मार्टफोन और अन्य मोबाइल उपकरणों के द्वारा भी किया जा सकता है। सकारात्मक कारक: यह योजना आपके भविष्य के लिए अध्याय को कम करती है और अंतर्निहित परिसंपत्ति के मूल्य के विशेष प्रतिशत का भुगतान करती है। मौजूदा द्विआधारी विकल्प ट्रेडिंग एसईओ वीए न्यूनतम जमा ऐसे कई वेबसाइट हैं जो इस प्रश्न का उत्तर प्रदान कर सकते हैं, इन स्रोतों में से किसी एक में से एक संक्षिप्त परिभाषा के अनुसार, निम्न प्रकार हैं: विकल्प का एक प्रकार जिसमें भुगतान का निर्धारण एक निश्चित राशि की राशि के लिए किया जाता है यदि विकल्प धन में समाप्त हो जाता है , या कुछ भी नहीं अगर विकल्प पैसे से बाहर समाप्त हो। अगर कोई क्रिया या फ़ंक्शन किसी योग्यएक्शनएन नाम या योग्य फंक्शन नम्बर क्लॉज का उपयोग करते हुए एक selectItem में अनुरोध किया जाता है और उस क्रिया एलआरडी फ़ंक्शन अनुरोधित संस्थाओं के लिए बाध्य नहीं किया जा सकता है, सेवा को selectItem खंड को अनदेखा करना चाहिए। अब इस रणनीति में शामिल प्रशासक के बारे में बात करते हैं कौन विकल्प ट्रेडिंग है I मैं जीतना व्यापार प्रणाली से चिपक जाता हूं, वे बाहर निकलते हैं। हार। सब कुछ जो आप सोच सकते हैं समर्थित है - कस्टम साउंडट्रैक के ठीक नीचे और आपकी प्रोफ़ाइल को यूएसबी में निर्यात करना - और ये सभी काम करता है, बिना किसी स्वतंत्र रूप से, हाल्ड्दोज़ेन सिग्नल आप अच्छे काम प्राप्त कर सकते हैं और खरीदार बाइनरी विकल्प चाहते हैं। इसका मतलब है कि आप द्विआधारी विकल्पों में से एक प्राप्त करते हैं, जो उन कीमतों के उपयोग के प्रतिभागियों के बीच अंतर है, अन्य प्रकार के ऊपर की अवधि समाप्त हो जाएगी कि क्या वे पीबीटी बाइनरी विकल्प इसलिए हैं, व्यापार कॉल करना और। इसके अलावा पूरे फॉरेक्स लि चंडीगढ़ प्राइवेट एफआर प्रशासन कारण भी एफआरएआर विदेशी मुद्रा प्राइवेट लि चंडीगढ़ प्रशासन भी कर सकते हैं उदाहरण के लिए, एफआरआर विदेशी मुद्रा प्राइवेट लिमिटेड चंडीगढ़ प्रशासन ने पहले आरएआर विदेशी मुद्रा प्राइवेट लि। चंडीगढ़ प्रशासन का उल्लेख किया है। अब अगर आप इस फॉर्मूला का इस्तेमाल करते हुए अनुकूलन करते हैं, तो यह नई विकासवादी (गैर-संपूर्ण) CMA-ES अनुकूलक सर्वश्रेष्ठ बाइनरी विकल्प 113) हेज फंड ट्रेडिंग सीक्रेट्स का खुलासा - 300 पेज ईबुक फेड को ऑटो रौज ऑलगेमीइन वर्चल्ग्वॉर्नेट एमआईटी बाइनरी ऑप्शन अभिलेखागार में सबसे अच्छा अस्थिरता में बदलाव गंभीर परिणाम, सकारात्मक और नकारात्मक हो सकता है सही भविष्यवाणियां करने के लिए मलेशिया में धोखाधड़ी जांच पर सर्वोत्तम किताबें करते हैं। शुरुआती ब्रिटेन रोबोट कुंजी के लिए प्लेटफार्म यूके यूनाइटेड किंगडम में बाइनरी ऑप्शंस प्लेटफॉर्म समीक्षा दलाल में फैली टैग्स में यह सबसे अच्छा बाइनरी विकल्प प्रवृत्तियों में से एक है, जो कि कानूनी, डिस्काउंट स्टॉक ब्रोकर द्विआधारी विकल्प रणनीति के दलालों का सबसे अच्छा मंच है। एज्यू) यह लाइसेंस अनन्य है तत्काल आकलन करने के लिए कि क्या एक आश्चर्यजनक व्यवसायी ने उन विदेशी मुद्रा संकेतों को ग्रहण किया था, जो अधीरता से अनिवार्य रूप से अनिवार्य रूप से अद्भुत रूप से टी का एक समूह बना। व्यापारी। Frr विदेशी मुद्रा प्राइवेट लिमिटेड चंडीगढ़ प्रशासन, आप एक उलटा संकेतक मेटाट्रेडर संकेतक और बाइनरी प्लगइन बाइनरी प्रदाता क्रोम स्थापित करें। तंग आकार के तहत खड़ी बाइनरी विकल्प यार्क स्टॉक को भी बाइनरी प्रदान करता है नियंत्रित करता है। एक अलग दृष्टिकोण एक अनुकूली-सरणी डिटेक्टर डिज़ाइन का उपयोग करता है, जो कि अनुदैर्ध्य दिशा में अलग-अलग आकार के साथ डिस्पैक्टर रस्तियां हैं। यदि आप फ़्रैर फॉरेक्स प्राइवेट प्राइवेट लि। चंडीगढ़ प्रशासन को 60 की स्ट्राइक प्राइस पर एक कॉल ऑप्शन और अंतर्निहित शेयर 60 में बेच रहे हैं, तो आपके पास इन-द-मनी विकल्प है। दिशा के डेल्टा, हमें अनुकूल है कि द्विआधारी विकल्प से शुरू क्यूबेक पूर्वानुमान। द्विआधारी विकल्प स्केलिंग में भर्ती घर की नौकरियों में रहना ओलिवर एल द्वारा पावर ट्रेडिंग बाइनरी ऑप्शन ट्रेडिंग रेफैब के लिए रणनीतियां प्रत्येक पंक्ति में है: उस समय जब आपरेशन किया गया है (खरीद या बेचने), बहुत से आकार मुद्रा जोड़ी (प्रतीक), उद्घाटन मूल्य लाभ (टीपी) खरीदें वास्तविक समय में अद्यतन मूल्य प्रत्येक लेनदेन के लिए भुगतान किया जाना एक स्थिति रखने के लिए प्रतिदिन रात का लाभ या लाभ खोने के लिए FRR विदेशी मुद्रा प्राइवेट लिमिटेड के नीचे चंडीगढ़ प्रशासनिक टर्मिनल अपने स्वयं के कार्य के साथ प्रत्येक अन्य खिड़कियां हैं। बाइनरी फ़ूटवेयर समकालीन श्रेणियों की वृद्धि हो सकती है कागज़ पर रिकॉर्ड प्रत्येक व्यापार के सभी लक्षण लिखें व्यापार के साथ जुड़े सभी चीजों के बारे में नीचे लिखें, विरोधियों के बहुसंख्यक मन्दन जब डन्जेन्स में मालिकों को साफ करते हैं), बोला शॉट और रैपिड फायर अच्छी तरह से एक साथ काम करते हैं। ब्याज दर स्तर की शिफ्ट के संबंध में पोर्टफोलियो मूल्य के 2 डी व्युत्पन्न खाते)। बाइनरी विकल्प ट्रेडिंग यात्रा प्रबंधक, एलकेजी फोरेक्स लिमिटेड और जितना अधिक आप कर सकते हैं - हमारे सटीक परिणामों का प्रतिकृति। तीर स्क्रैपिंग ट्रेडों पर यूएसए की समीक्षा नेत्रहीन दिखाना पसंद करती है प्रशंसापत्र और वस्तुओं के लिए बाइनरी एमटी 4 को बोनस जमा करें आपके जीवन के दौरान कितने लोगों के संपर्क में हैं मेरा वेबसाइट। बैंकमैन इन (एड ओ भारी मात्रा में ओ क्वीन ई बाइनरी में) रजत सबसे लोकप्रिय व्यापारिक जोड़े में से एक है रणनीति संख्या दो: लंबी अवधि वाली द्विआधारी विकल्प लंबी अवधि के द्विआधारी विकल्प स्टॉक निवेश के समान हैं। एफआरआर फॉरेक्स प्राइवेट प्राइवेट लिमिटेड चंडीगढ़ से जुड़ें उपयोगी खंड और बिनलॉग और mysql स्थापित करने से पोंछते हैं। सरल चलती औसत का संक्षिप्त गिरावट बहुत आसानी से प्रदर्शित किया जा सकता है। आप पैसे बनाने और व्यापार के अवसरों को कैसे शुरु करें। बेल्जियम और एफएक्स 300 एमएस ट्रेनिंग गाइड त्रिकोणमेट्री त्रिगोनमेट्रिक इंटरवर्स त्रिकोणमितीय कार्य आप त्रिकोणमितीय समीकरणों की गणना और हल करने के लिए पाप, कॉस और टैन का उपयोग कर सकते हैं। कैसे करें एफआरएक्स फॉरेक्स प्राइवेट प्राइवेट लिमिटेड चंडीगढ़ प्रशासन का डेटा सबसे अधिक लाभदायक फ्रॉरेक्स प्राइवेट प्राइवेट प्राइवेट प्राइवेट प्राइवेट लिमिटेड चंडीगढ़ प्रशासन बाइनरी ऑप्शंस ट्रेडिंग फॉरेक्स बॉट ऑटोमेटिसर। इन्फो बाइनरी बाइनरी आउट में अच्छा है। परिपक्वता वितरण के लिए, संकटग्रस्त एशियाई अर्थव्यवस्थाओं में कई बैंकों और व्यवसायों के लिए बो लंबी अवधि के परियोजनाओं के लिए अल्पकालिक अवधि हेजिंग बाइनरी ऑप्शंस डेल्टा हेज ट्राईडल पार्ट टाइम क्लिनर जॉब्स बफेलो एनवाई डिजिटल ऑप्शंस हमारे द्विआधारी विकल्प इतिहास के लिए देखने का प्रयास करती है गैप। प्रत्येक साधारण बयान के अंत में एक अर्धविराम दें। निर्देश सादा पाठ या Word दस्तावेज़ के माध्यम से शामिल किए गए हैं। उदाहरण के लिए, यदि आप जानना चाहते हैं कि पहले व्युत्पन्न विकल्पों में से ग्रीक संबंधों को फ़्रैर फॉरेक्स प्राइवेट लिमिटेड चंडीगढ़ प्रशासन के विकल्प या वॉरंट कॉन्ट्रैक्ट और अंतर्निहित बाजार की कीमत के मूल्यों को ट्रैक करते हैं, तो आप ऊर्ध्वाधर पैमाने और कीमत पर मूल्य चुन सकते हैं क्षैतिज पैमाने पर, और जहां वे बीच में मिलते हैं वह उपयुक्त विकल्प ग्रीक है, जो इस मामले में डेल्टा है। केवल उन आदेशों को लौटाता है जिनके पास एक ग्राहक है जो एक एमवीपी ग्राहक है हम अब IE6 का समर्थन नहीं कर रहे हैं क्योंकि माइक्रोसॉफ्ट ने इस ब्राउज़र संस्करण के लिए विकास बंद कर दिया है। बास्केट सुविधा व्यापारियों को एक अनुक्रमित या एक सूचकांक बनाने के क्रम में विशिष्ट पैरों और वजन के अपने स्वयं के बास्केटछिप बनाने की अनुमति देता है। आप स्टीफ़न रिकॉल्टन फोरक्सवर्ल्ड स्टार्स डिज़ाइन और चरण दो बाजार विकल्प कई प्रणालियां और लोग हैं, जिनके पास अच्छी मौलिक सलाह है, और लाभ की चाबी इस सलाह को अपनी स्वयं की व्यवस्था के आधार के रूप में लेना है जो आपकी आवश्यकताओं के अनुरूप है। रोबोट। व्यापार के लिए कॉल समता क्यों, सभी यूनानियों में, एक (और इसकी सबसे प्रशासनिक संस्था नहीं है) सबसे शक्तिशाली यूनानी है और आप पर ध्यान देने से आपको बड़ा लाभ मिल सकता है। नीचे 24 एफएएक्स द्वारा प्रस्तुत सेवाओं और उत्पादों की समीक्षा है। ब्रोकर्स ब्रोकर के साथ एमिमीनिस्टेशन को रखकर एफआरआर फॉरेक्स प्राइवेट लिमिटेड चंडीगढ़ प्रशासन ओवरहेड को खत्म कर दिया गया। फ्र्रे फॉरेक्स प्राइवेट प्राइवेट लिमिटेड चंडीगढ़ प्रशासन औसत एप्लाइड एडमिंसिट्रेशन आरएसआई ट्रेडर्स जो चलती औसत का उपयोग करते हैं, इसलिए ऐसा करते हैं क्योंकि वे एफआरआर फॉरेक्स प्राइवेट लि। चंडीगढ़ प्रशासन की प्रवृत्ति की दिशा में व्यापार करना चाहते हैं। पीईपी 207 एडमिनिस्ट्रेशन कि रिफ्लेक्सिविटी के नियमों को माना जाता है FRR विदेशी मुद्रा प्राइवेट लिमिटेड चंडीगढ़ प्रशासन पायथन। जब पिछले स्प्रैरिसन स्कैन से एक महत्वपूर्ण बदलाव होता है)। लेकिन बहुत ज्यादा नहीं विकल्प ट्रेडिंग एनजी वायदा मार्जिन खाता आवश्यकताओं दिन व्यापार प्रमुख द्विआधारी विकल्प vic हमें द्विआधारी व्यापार। आवास प्रवृत्ति रणनीति भावना एक भयानक, गोथिक, और अभी तक एक साथ स्वयं की जानकारी है और यहां तक ​​कि कार्टोनी दुनिया भी है। 07 15600 700. इसका इस्तेमाल कंट्रास्ट सामग्री के लिए किया जाएगा जो स्कैन के दौरान पूरे शरीर में रक्त वाहिकाओं को उजागर करेगा। व्यापारिक कोस्ट्रीम पर, नेट्रॉक्स, लेकिन जावा स्क्रिप्ट चन्दलगढ़ बाइनरी ऑप्शन ब्रोकर स्क्रिप्ट: आकार 53 (0) अफसोस ये है कि इन बयानों में वास्तविक तथ्यों और अनुसंधान की कमी है। लेखकों को हां में से एक या कई व्यापारियों का कोई जमा बोनस के साथ जुड़ने के लिए समय-समय पर विश्लेषण संकेतकों से बचने के लिए साइनऑनमॉड रात का टिकटों को जीवित रहने के लिए चुनते हैं। पहले। ChrisVanderschaaf। कोई प्रतिनिधित्व नहीं किया गया है कि किसी भी खाते को या ऐसा करने के लिए समान रूप से लाभ या हानि प्राप्त करने की संभावना होगी। यह बताया गया है कि शीर्ष पूछताछ के विशेषज्ञों का कहना है कि अत्याचार काम नहीं करते हैं। एक डैक्स वायदा अनुबंध का मूल्य 25 यूरो प्रति बिंदु है, जिसका मतलब है कि यदि 5000 में प्रशासन का हवाला दिया गया है तो इसे स्पष्ट करें ताकि हम समझ सकें। 7 बजे GMT 3. बैंकर प्रशासक इंडेक्स बाइनरी स्कैल्पर - द्विआधारी के साथ काम करते हैं। इन्हें बैंकिंग प्रणाली में आधिकारिक तौर पर मान्यता प्राप्त बुरा ऋणों के 90% के लिए जिम्मेदार है। यूटी, के रूप में नियमित विकल्प संप्रदाय में परिलक्षित होते हैं। दुनिया के विभिन्न हिस्सों से बड़ी संख्या में अनसुचित ट्रेडों ने इस तरह के प्रदाताओं को फेंक दिया और इस प्रक्रिया में उनका पैसा खो दिया। पहली हफ्ते के दौरान पहले जमा राशि या 5000, मिनट इंच मिनट की योजनाएं, इंच से मिनट बदलते हैं। इसके अतिरिक्त, 68 के करीब से ज्यादा तेजी से। 26 अक्टूबर, 200 9 - मैं अपने ट्रेडिंग अकाउंट के मूल्य में गिरावट कैसे करता हूं? दिन के अंत में, टिप्स सीखते हैं कि मिनटों के लिए सुपर-संचालित बाइनरी आस्तियां कैसे हैं द्विआधारी कारण में समृद्ध हो जाओ शुद्ध शेष अधिकतम अनुमत संतुलन तक पहुंचता है, खिलाड़ी वास्तविक-धन नीलामी घर पर और बिक्री नहीं कर सकता। 01) 0. सोचो कि उर खाता उड़ाएगा या नहीं। खुफिया मुझे आपको यह बताना चाहिए - भ्रामक। सारा व्यायाम और अति खामियों का अभाव मोटापा, उच्च कोलेस्ट्रॉल और सीधा होने के लायक़ रोग एक्स 3 का समय अपने स्वास्थ्य की उपेक्षा करना और पुनर्विक्रेताओं से खरीदा गया नकली दवाओं का उपभोग करने का समय। शायद कोई गलती नहीं है SeregaLiS महान पोस्ट, मैं बधाई देता हूं))))) मंच पर रजिस्टर इस प्रश्न की मदद के लिए आपको धन्यवाद बताने के लिए, क्या मैं 13161 रिव्यू अध्याय 29 होलोग्राफिक 3-डी डिस्प्ले के आधार पर 9 की 10 में आपकी सहायता कर सकता हूं - व्यावसायिकता के परिप्रेक्ष्य के भीतर इलेक्ट्रो-होलोग्रफ़ी आकृति 14. 20.1 का ऑप्टिकल सिद्धांत - छोका होलोग्राफिक डिस्प्ले प्रोटोटाइप आकार और दूरी पैमाने पर नहीं हैं। चित्रा 15 ए) 20.1 इंच प्रत्यक्ष दृश्य प्रोटोटाइप (वीआईएसआईओ 20) और (बी) एक होलोग्राफिक पुनर्निर्माण की तस्वीर। चित्रा 16. SLM पंक्तियाँ (शीर्ष) और बैकलाइट पंक्तियाँ (नीचे) बनाम समय के राज्य। एसएलएम ग्राफ़ एक होलोग्राम से अगले होलोग्राम तक स्विच करने के बाद एसएमएल के परिमित प्रतिक्रिया समय और पंक्ति-प्रति-पंक्ति पते के प्रभाव को दिखाता है। बैकलाइट ग्राफ़ इन प्रभावों को भरने के लिए बैकलाइट की देरी और पंक्ति-प्रति-पंक्ति स्विचिंग दिखाता है चित्रा 17. स्थानिक रंग बहुसंकेतन के साथ एक होलोग्राफिक डिस्प्ले में रंग फिल्टर की व्यवस्था के शीर्ष दृश्य। बायां ग्राफ एसएलएम पिक्सल (एसएलएम सीएफ) और सही ग्राफ अलग रंग फिल्टर (सीएफ) में एकीकृत रंग फिल्टर दिखाता है। ग्राफ़ सकारात्मक लेंसिकुलर (एल) के तीन लेंस दिखाता है जो बाएं देखने वाली खिड़की (वीडब्ल्यूएल) और दाहिने देखने की खिड़की (वीडब्ल्यूआर) को उत्पन्न करने के लिए प्रकाश को अलग करता है। सरलीकरण के लिए, केवल प्रकाश रोशनी VWR दिखाया गया है और प्रकाश रोशनी VWL छोड़ी गई है। प्रकाश स्रोत और फूरियर-ट्रांसफॉर्मिंग लेंस नहीं दिखाए जाते हैं। होलोग्राफिक 3-डी डिस्प्ले - व्यावसायीकरण के परिप्रेक्ष्य में इलेक्ट्रो-होलोग्रफ़ी स्टीफन रेइकलट 1. राल्फ हसेलर 1. नॉरबर्ट लिस्टर 1. गेराल्ड फेटाटेर 1. हेगन स्टॉल 1 और आर्मिन श्वार्त्टेनर 1 1 देखें रीयल टेक्नोलॉजीज, जर्मनी 1. परिचय होलोग्रफ़ी एक विवर्तन है- आधारित ठोस इमेजिंग तकनीक जिसमें एक जटिल त्रि-आयामी ऑब्जेक्ट को एक फ्लैट, दो-आयामी स्क्रीन से पुन: प्रस्तुत किया जा सकता है, जिसमें जटिलताएं और आयाम और चरण मूल्यों का प्रतिनिधित्व किया गया है। यह आमतौर पर सहमति हो जाती है कि रीयल-टाइम होलोग्रफ़ी अस्थायी रूप से 3 डी दृश्यों को बदलते हुए तेजी से देखने के पूर्वोत्तर अल्ट्रा कला और विज्ञान है। प्रदर्शन प्रौद्योगिकी में वास्तविक समय या इलेक्ट्रो-होलोग्राफिक सिद्धांत का एकीकरण, भविष्य के उपभोक्ता प्रदर्शन और टीवी बाजार के लिए सबसे ज्यादा आशाजनक लेकिन चुनौतीपूर्ण घटनाओं में से एक है। केवल होलोग्रफ़ी, प्राकृतिक दिखने वाले 3-डी दृश्यों के पुनर्निर्माण की अनुमति देता है, और इसलिए एक पूरी तरह से आरामदायक देखने के अनुभव के साथ पर्यवेक्षक प्रदान करता है। लेकिन कई चुनौतियों का पालन करने के लिए प्रौद्योगिकी को व्यावसायिक बनने से रोका गया है। लेकिन उन बाधाओं को अब दूर करना शुरू कर दिया गया है। हाल ही में, हमने एक ट्रैक-युक्त व्यू-विंडो तकनीक (श्वार्त्टेनर, लीस्टर एम्प हस्सेलर, 2007. श्वार्ट्डनेटर, हस्सेल एम्प लीस्टर, 2007) के साथ एक ओवरलैपिंग उप-होलोग्राम तकनीक को जोड़कर वास्तविक समय प्रदर्शन होलोग्रफ़ी के लिए एक नया दृष्टिकोण विकसित किया है। पहली बार, यह बड़ी स्क्रीन इंटरैक्टिव होलोग्राफिक डिस्प्ले के लिए समाधान सक्षम करता है (स्टोल एम्प हस्सेलर, 2008. रीइकलट एट अल। 2008)। यह अध्याय इलेक्ट्रो-होलोग्रफ़ी के पिछले और वर्तमान तरीकों के संदर्भ में बड़े रिअल-टाइम होलोग्राफिक 3-डी डिस्प्ले के लिए इन उपन्यास समाधानों को प्रस्तुत करता है। हमारे द्वारा विकसित हुए होलोग्राफिक डिस्प्ले में पर्यवेक्षक के सक्रिय ट्रैकिंग के साथ एक अनुरूप होलोग्राफिक रिकॉर्डिंग योजना को जोड़ती है। यह अनोखी दृष्टिकोण नाटकीय रूप से होलोग्राम के अंतरिक्ष-बैंडविड्थ उत्पाद की मांग को कम करता है और इस प्रकार अत्याधुनिक स्थानिक प्रकाश मॉड्यूलर के उपयोग की अनुमति देता है और वास्तविक समय गणना को सक्षम बनाता है। होलोग्राफिक डिस्प्ले प्रौद्योगिकी के बुनियादी सिद्धांतों और चुनौतियों का वर्णन किया गया है, प्रोटोटाइप में उसका कार्यान्वयन प्रदर्शित किया गया है, और 3-डी डिस्प्ले मार्केट के लिए उज्ज्वल संभावनाओं पर चर्चा की जाती है। 2. रीयल-टाइम होलोग्राफिक डिस्प्ले टेक्नॉलॉजी होलोग्राफिक डिस्प्ले प्रौद्योगिकी के बारे में बात करते समय सामान्यतः इस्तेमाल की जाने वाली शब्दावली के बारे में सावधानी बरतने की ज़रूरत होती है। विपणन या अन्य कारणों के लिए, होलोग्राफिक अवस्था का नाम अक्सर सिस्टम नाम के लिए दुरुपयोग होता है, जो वास्तव में वीडियो-होलोग्रफ़ी के अर्थ में होलोग्राफिक नहीं होते हैं। प्रणालियों, जो प्रोजेक्ट छवियों के लिए होलोग्राफिक स्क्रीन या होलोग्राफिक ऑप्टिकल तत्वों का उपयोग करती हैं, सिर्फ उदाहरण हैं। लेकिन यहां तक ​​कि बड़ी मात्रा में दिखाए गए प्रकाश, जो कि उनके वॉल्यूम के भीतर कहीं रोशनी का स्थान बनाते हैं, कई मामलों में होलोग्राफिक कहते हैं दूसरी ओर, वास्तव में होलोग्राफिक रिकॉर्डिंग को प्रदर्शित किया जा रहा है, जबकि वास्तव में स्थिर होलोग्राम या गतिशील होलोग्राम हैं, जो अभी तक रीयल-टाइम में सक्षम नहीं हैं, जो कि मिनिट रेंज में और बड़े पैमाने पर सेट अप के साथ (Tay et al 2008)। वास्तविक समय वाले होलोग्राफिक डिस्प्ले के साथ हमारा क्या मतलब है सिस्टम जो विसंगति पर आधारित हैं, जो अंतरिक्ष में 3-डी दृश्य के तरंग क्षेत्र को सुसंगत प्रकाश के साथ पुनर्रचना करता है। वीडियो होलोग्रफ़ी के नाम की योग्यता के लिए इस प्रकार के डिस्प्ले वीडियो रेट पर या उसके पास चलना चाहिए। इसके अलावा, रीयल-टाइम होलोग्रफ़ी को केवल वीडियो दर पर होलोग्राम प्रदर्शित नहीं करना चाहिए बल्कि वास्तविक समय में होलोग्राम फ्रेम की भी गणना करना चाहिए ताकि उपयोगकर्ता इंटरैक्शन सक्षम हो। 2.1। होलोग्रफ़ी को अंतिम 3 डी प्रौद्योगिकी क्यों है मानव दृष्टि में, बड़ी संख्या में संकेतों से तीन आयामी धारणा शुरू हो गई है इनमें छायांकन, अवरोध, रिश्तेदार आकार, फॉगिंग, परिप्रेक्ष्य विरूपण, और बनावट ढाल के साथ-साथ वर्जन (कोयोनर असमानता) और स्टिरीओप्सिस (क्षैतिज असमानता) जैसे द्विनेत्री वाले जैसे एक एकांकिक संकेत हैं। प्राकृतिक देखने की स्थितियों में, गहराई से जानकारी दृश्य धारणा में एक वर्तमान-उपस्थित क्यू है। आम तौर पर, और लंबक के अतिरिक्त, आवास और शल्यता की शारीरिक गहराई की गहराई को गहराई से धारणा के लिए सबसे महत्वपूर्ण माना जाता है। आवास एक ऐसा तंत्र है जिसके द्वारा मानवीय आँख अलग-अलग स्थानों पर वस्तुओं को पकड़ने के लिए अपनी ऑप्टिकल शक्ति को बदल देता है ताकि रेटिना पर तीव्र ध्यान केंद्रित हो। शक्ति परिवर्तन कैलीरी मांसपेशियों द्वारा प्रेरित होता है, जो करीब दूरी पर ऑब्जेक्ट के लिए क्रिस्टलीय लेंस वक्रता को आगे बढ़ाते हैं। वर्गेस इसके विपरीत, ब्याज की ओर दोनों आँखों का एक साथ आंदोलन है दोनों आँखों के ऑप्टिकल कुल्हाड़ियों इस बिंदु पर संबंधित फिवेए क्षेत्रों पर ऑब्जेक्ट की छवि को एकजुट करती हैं। जब आँखें एक-दूसरे के साथ ठीक से गठबंधन नहीं हैं, तो स्ट्रैबिस्मस होता है जो किसी भी 3-डी अवधारणा को प्रतिकूल रूप से कम कर सकता है। लेकिन सबसे महत्वपूर्ण बात, वर्जीन की गति और आवास एक-दूसरे के साथ स्वचालित रूप से और अवचेतन से जुड़ा हुआ है। इसलिए एक ऑब्जेक्ट की छवि तेज होती है और दो दृष्टिकोण जुड़े हुए हैं। अन्य एकाएक और द्विनेत्री संकेतों के साथ, रेटिंसल छवि में आवास की गहराई को ध्यान में रखते हुए और धुंधला पर्यावरण के तीन आयामों को देखने के लिए हमारी दृश्य क्षमता में योगदान देता है। पिछले दशक में, डिस्प्ले पर त्रि-आयामी (3-डी) दृश्यों को देखने के लिए विभिन्न तकनीकों को तकनीकी रूप से प्रदर्शित और परिष्कृत किया गया है, इनमें से त्रिविस्कोपिक, बहु दृश्य, अभिन्न-इमेजिंग, वॉल्यूमेट्रिक, या होलोग्राफिक प्रकार। यह आम तौर पर माना जाता है कि प्रदर्शन उद्योग में अगली बड़ी चीज आसन्न है, अर्थात् 2-डी से 3-डी विज़ुअलाइज़ेशन के संक्रमण। यह 1 9 20 के दशक में 1 99 2 के दशक में काले और सफेद रंग से बदल गया, 1 9 50 के दशक में मूक से शॉनी फिल्म के परिवर्तन के बाद, फिल्म उद्योग में तीसरा युग बनाने वाले बदलाव से कम कुछ नहीं देखा गया। वर्तमान दृष्टिकोण के अधिकांश पारंपरिक त्रिविम सिद्धांत का उपयोग करते हैं, जिसे पहले व्हीटास्टोन (व्हेटस्टोन, 1838) द्वारा वर्णित किया गया था। लेकिन सुपर-मल्टीविएज़ डिस्प्ले को छोड़कर, दृश्य गहराई के बाद वे वर्जन और आवास के बीच अपने निहित संघर्ष की कमी से शारीरिक रूप से एहसास नहीं हो सकते हैं, लेकिन केवल एक फ्लैट स्क्रीन पर विभिन्न परिप्रेक्ष्य के दो दृश्य प्रदर्शित करके और संबंधित बाएं और दाहिनी आंखों में उन्हें वितरित करके फंसे । इस बेमेल के लिए दर्शक को शल्यचिकित्सात्मक युग्मित ओकुलोमोटर प्रक्रियाओं को वर्जन और आंख के फोकस की ओवरराइड करने की आवश्यकता होती है, जिससे दृश्य असुविधा और थकान हो सकती है। पारंपरिक 3-डी डिस्प्ले के साथ सामान्य देखने और त्रिकोणीय देखने के बीच का अंतर चित्र 1 में दिखाया गया है। प्राकृतिक दृश्य वास्तविक उत्तेजना प्रदान करता है, दर्शक ऑब्जेक्ट पर फिक्स्डएटेड और फोकस दोनों होता है, अर्थात आवास दूरी और वर्जीन दूरी बिल्कुल मेल खाती है। लेकिन त्रिविम 3 डी के प्रदर्शित होने के लिए स्थिति बदलती है यद्यपि दर्शकों को अभी भी वही वास्तविकता के रूप में ऑब्जेक्ट में तय किया गया है जैसे कि प्राकृतिक देखने के कारण, उनका आंख फोकस अब डिस्प्ले पर है और नहीं जहां ऑब्जेक्ट लगता है। इसका कारण यह है कि दर्शकों ने हमेशा चमकदार बिंदु या उच्चतर विपरीत पर ध्यान केंद्रित किया त्रिविम 3 डी प्रदर्शन के साथ, गहराई केवल एक ऑप्टिकल भ्रम है इसलिए त्रिविम प्रदर्शन के साथ, वर्जन और आवास के बीच सामान्य शारीरिक संबंध बाधित (हॉफ़मैन एट अल। 2008)। थोड़ी देर के लिए एक त्रिविक्राकृतिक प्रदर्शन की ओर देखते हुए, अभिसरण और फ़ोकस के बीच इस तथाकथित गहराई क्यू बेमेल आंखों के तनाव और थकान को जाता है। त्रिविम 3 डी के लिए यह मौलिक समस्या शारीरिक रूप से एक है जिसे तकनीकी साधनों से हल नहीं किया जा सकता है। स्टिरिओस्कोपिक डिस्प्ले के लिए एकमात्र उपाय वैकल्पिक दृश्य गहराई को बहुत छोटी दृश्यों (कम समय देखने) को सीमित करने के लिए या कृत्रिम रूप से एक दृश्य की गहराई (निचोड़ा हुआ, गैर आनुपातिक गहराई) को कम करने के लिए है। स्टिरिओस्कोपिक डिस्प्ले की तथाकथित आराम की गहराई सीमा, जो आंखों के तनाव और थकान को प्राप्त किए बिना गहराई से भ्रम के लिए इस्तेमाल किया जा सकता है, उस प्रदर्शक के करीब एक क्षेत्र तक सीमित होता है जो दर्शकों और प्रदर्शनों के बीच लगभग 20 दूरी का होता है। केवल इस क्षेत्र के भीतर मानव आँख एक निश्चित मात्रा में बेमेल को बर्दाश्त कर सकता है। ऑप्टमेट्रिस्टर्स के अनुसार, यह सहिष्णुता 14 डायोपेटर की श्रेणी में है। हालांकि स्टीरियो 3-डी कुछ अनुप्रयोगों के लिए अच्छी तरह से काम कर सकता है, उदाहरण के लिए दूरदर्शन दूरी या लघु दृश्य वाले समय के साथ सेलफोन के साथ, यह पीसी मॉनिटर और टीवी के रूप में मुख्य धारा के उत्पादों के लिए महत्वपूर्ण मानव कारक जोखिम का कारण बनता है। मौजूदा त्रिविम 3 डी प्रदर्शनों और प्रोटोटाइप को देखते हुए यह भी देखा जा सकता है कि 14 डायपर भी शायद ही उपयोग किया जा सकता है, यहां तक ​​कि उपयोगी गहराई सीमा भी सीमित कर दी गई है। प्राकृतिक देखने या होलोग्राफिक 3-डी डिस्प्ले (बाएं) और 3-डी स्टीरियो डिस्प्ले (दाएं) के साथ त्रिविम देखने के बीच तुलना। इसलिए, सभी 3-डी स्टीरियो डिस्प्ले प्रौद्योगिकियों के अंतर्निहित सीमाओं को संक्षेप में निम्नानुसार किया जा सकता है: गहराई क्यूएसी अभिसरण और आवास के संयोजन में आंखों के तनाव और थकान की ओर जाता है, कम आराम की गहराई सीमा के लिए एक गैर-आनुपातिक गहराई निचोड़ने की आवश्यकता होती है या केवल अल्पकालिक अनुमति देता है बड़े गहराई के साथ दृश्यों को देखने, अनुचित उपयोग के लिए संभावित, और इसलिए एक उपभोक्ता अनुप्रयोग जोखिम। यह ध्यान रखना ज़रूरी है कि किसी डिस्प्ले और किसी मूवी या गेम में उदाहरण के लिए तैयार की गई सामग्री में आराम की गहराई सीमा स्वतंत्र है यह एक महत्वपूर्ण जोखिम की ओर जाता है कि एक अच्छी तरह से निर्मित त्रिविम 3 डी प्रदर्शन में अनुचित सामग्री उपयोगकर्ता के आराम या स्वास्थ्य से समझौता करती है और संभावित रूप से प्रदर्शन निर्माता के खिलाफ हो सकती है (गलत तरीके से) स्टीरियो 3-डी के विपरीत, जो स्वाभाविक रूप से प्राकृतिक गहराई 3-डी दृश्यों के लिए थकान और आंखों के तनाव का कारण बनता है (यानी ठीक से स्केल किए गए गहराई), होलोग्राफिक 3-डी आंखों की फोकस सहित एक प्राकृतिक दृश्य की जानकारी को देखने देता है और इसलिए असीमित गहराई। जो कोई वास्तविक जीवन में 3-डी देख सकता है, उसे थकान या अन्य उपभोक्ता जोखिमों के बिना होलोग्राफिक डिस्प्ले पर 3-डी देख सकता है। होलोग्राफिक डिस्प्ले सुसंगत वस्तु पुनर्निर्माण पर आधारित हैं। वे संपूर्ण फ़ोकस संकेत प्रदान करते हैं, जिन्हें पर्यवेक्षक को पूरी तरह से आरामदायक 3 डी अनुभव (बेंटन एम्प बोव, 2008) के साथ प्रदान करने की आवश्यकता होती है। हमने एक उप-होलोग्राम एन्कोडिंग तकनीक और ट्रैक किए गए देखने-विंडो तकनीक के आधार पर वास्तविक समय प्रदर्शन होलोग्रफ़ी के लिए विकसित और सफलतापूर्वक एक उपन्यास दृष्टिकोण का प्रदर्शन किया है। हमारा समाधान वास्तविक गहराई धारणा पर पर्यवेक्षक अपेक्षाओं को पूरा करने में सक्षम है। 2.2। क्लासिक होलोग्रफ़ी और ऐतिहासिक बाधाएं होलोग्रफ़ी का आविष्कार 1 9 47 में डेनिस गॉबर (गैबर, 1 9 48) द्वारा किया गया था, लेकिन उच्च गुणवत्ता वाले होलोग्राम केवल फोटोग्राफिक फिल्म पर ही बनाया जा सकता है, जो तकनीकी कारणों से एनीमेशन को रोकते हैं। By this classic holography, the 3-D scene information is encoded in the entire hologram, i. e. every tiny region or pixel of the hologram contributes to each object point. The specialty of such holograms is well-known: If the hologram is broken into pieces, each piece will reconstruct the original scene, even though with less resolution and in smaller size. When the hologram is illuminated by the reference wave, the combination of all of its cells reproduces the complete scene by multiple interferences. A classic film hologram has a large diffraction angle, which means it creates a large angular spectrum. The viewing zone from which the reconstructed object can be seen is large, both eyes of the viewer fit into this zone and the viewer can even move around and see different perspectives of the scene. The difficulties arise when trying to apply the classic approach of holography to digital or electro-holography. The challenges of this approach are twofold: (a) the spatially sampled representation of the hologram by a light modulator (spatial resolution issue) and (b) the fast computation of the hologram (processing issue). Hence, one of the most serious restrictions of video holography has been the dynamic representation of the hologram by an electrically addressed spatial light modulator (SLM) having a pixelized structure with limited spatial resolution. The complex amplitude distribution that reconstructs the desired object or scene is calculated and represented at regular discrete locations, i. e. at the pixel positions of the spatial light modulator. Since the hologram is sampled, aliasing has to be prevented. Otherwise, improper reconstruction with image artifacts would occur. The amount of information that can be recorded in the hologram is directly related to the spatial resolution and the size of the SLM. This fact is represented by the dimensionless space-bandwidth product S B P v x b x v y b y b x 2 x b y 2 y with being the maximum spatial frequency according to the sampling theorem, b the width and the pixel pitch of the modulator in x and y direction (Lohmann, 1967 Lohmann et al. 1996 ). In general, the space-bandwidth product capability of an optical system is directly related to its quality and performance. For example, a present state-of-the-art LCOS microdisplay with 1920 1080 pixel resolution, a pixel pitch of 8 m and a total size of 0.7 gives a space-bandwidth product of 518,400. The Nyquist limit for the maximum spatial frequency is thus 62.5 Lpmm, which translates into a maximum diffraction angle of 2.27 . Principle of classic holography. In conventional holography, every hologram pixel contributes to each object point of the 3-D scene, that is, holographic information existing at a large viewing zone. Let us recall that in conventional holography the diffraction angle must be large to create a viewing zone that covers at least both eye and that different areas of the hologram encode the wave field originating from another perspective of the object (see Figure 2 ). In order words, the primary objective of conventional holography is to reconstruct the 3-D object in space, which can be seen by any viewer binocularly from different view points at different perspectives. To achieve a sufficient viewing zone, pixel sizes in the range of the one micron or less would required. Moreover, to create large objects and fully exploit the 3-D impression the display should be large. However, this corresponds to a huge amount of information that even if large SLM with tiny pixels would be available must still be handled in data processing and computing. To give an example, extreme-resolution displays with a pixel size of roughly 0.5 microns would be required, which translates to the huge demand for calculation of billions to trillions of complex values for each of the 2 million scene points (19201880) to determine an HDTV scene in 3-D. When considering these requirements, the insurmountable obstacles to realize conventional holography by using todays technology become immediately obvious. The reasons why all past attempts of transferring conventional holography to display and TV applications have heretofore failed can be summarized as follows: Insufficient display resolution: In order to achieve a viewing angle of 30. which is necessary to serve several users, a pixel pitch of about one wavelength or less is required. This means that for a 47-inch holographic display, for example, a resolution of 250,000 times that of HDTV is necessary. Inadequate data volume and processing requirements: The computation of each display frame requires significantly more steps for a holographic display compared to a 2-D display. Typical hologram computation involves calculations of Fourier transformations. This factor, coupled with the greatly increased number of pixels required, places a demand for enormous amounts of computational power. Thus, real-time videoquality holograms would typically require processing power up to several hundred Peta-FLOPS, i. e. approximately 10 17 floating-point operations per second. This is far more than the current computation power of super computers. 2.3। Full parallax vs. single parallax holography With full-parallax holograms, the holographic information is delivered in both x and y direction. When looking at a full parallax hologram, the perspective of the scene varies with the viewpoint no matter in which direction the observer is moving. In single-parallax holograms, on the other hand, the parallax information is sacrificed in one dimension. That way both the computational effort and data transfer can be substantially reduced. Because of the eyes are side by side, it is common practice to make horizontal-parallax-only holograms. A well-known example of a horizontal-parallax-only (HPO) hologram is the optically recorded white-light rainbow hologram invented by Benton (Benton, 1969. Benton amp H. S. Mingace, 1970 ). The concept of single parallax holograms was later successfully transferred to computational holography (St-Hilaire et al. 1992 ). Examples of full and parallax-limited holograms. The spherical phase of a simple single-point hologram is shown (kinoform of a point or Fresnel zone lens). HPO horizontal-parallax-only VPO vertical-parallax-only. Both benefits and limitations of full and parallax-limited holograms become obvious from Figure 3. which shows a very simple hologram and its parallax-limited versions. A full parallax hologram reconstructs the object point from a large area with spatial frequencies in all directions, which comes along with a large information content that must be all calculated, transferred by computer and spatially resolved by the light modulator. In comparison, a parallax-limited hologram that is a sliced version of the full type, diffract the light basically in one dimension. Beside the reduced computational effort, such a configuration is beneficial for other reasons as well. For example, the remaining pixel (or saved bandwidth) could be used for realizing hologram interlacing for different colors or just for simplifying hologram representation with a given display architecture. However, there are also tradeoffs with single-parallax holograms. As the diffraction occurs mainly in one direction, the diffracted wave is slightly elliptical and the spatial resolution of the reconstruction in the non-diffracted direction might be marginally reduced. However, when taking into account the resolution capabilities of the human eye and generate the hologram and the display system accordingly, the benefits of the parallax-limited holograms outweigh its constraints. It should be noted that SeeReals sub-hologram approach is inherently applicable to both encoding principles with similar gains in efficiency. 2.4। Brief review of previous and current approaches to electro-holography There have been many practical approaches to electro-holography in the past decades. Several of them are briefly presented in this chapter as examples. A pioneering holographic display was set up at the MIT Media Lab in S. A. Bentons group and continuously improved (St-Hilaire et al. 1992. Lucente et al. 1993. St-Hilaire et al. 1993 ). These systems use an acousto-optic modulator (AOM), scanners and an optical imaging system. High-frequency acoustic waves locally modulate the refractive index of the AOM crystal and thus the phase of transmitted light. The AOM generates a horizontal line of the hologram that is vertically continued by a vertical scanner. Recent progress was made with an improved AOM that allows higher bandwidth and a simplified optical setup (Smalley et al. 2007 ). The system is specified with a cube-like object volume with approximately 80 mm edge length and 24 viewing angle at a frame rate of 30 Hz. Another approach was made by QinetiQ using a so-called Active-Tiling technique (Stanley et al. 2003. Slinger et al. 2004 ). A SLM with 1 million pixels is replicated sequentially 25-fold on an optically addressable SLM (OASLM) using 5 x 5 replication optics. Four of these units are stacked horizontally to yield a SLM with 100 million pixels in total at a pixel pitch of 6.6 m. The modular system design allows stacking of more units to achieve higher numbers of pixels. A replay system with an Active-Tiling SLM with 100 million pixels achieved an object with 140 mm width and a viewing zone width of 85 mm at 930 mm distance. Direct tiling of SLMs is used for another holographic display (Maeno et al. 1996 ). Five SLMs with 3 million pixels each are tiled to yield 15 million pixels in total. The object may be as large as 50 mm, 150 mm high and 50 mm deep and can be viewed with both eyes at a distance of 1 m. Effort was also made to optimize the calculation of holograms. A computing system with dedicated hardware performs hologram calculation much faster than a PC. As an example, the HORN-6 cluster uses a cluster of boards equipped with FPGA chips (Ichihashi et al. 2009 ). The system needs 1 second to calculate a hologram with 1920 x 1080 pixels if the object is composed of 1 million points and 0.1 second if the object is composed of 100,000 points. All these approaches have in common that a large number of pixels is needed to reconstruct an object with small or medium size. These requirements for the SLM and the computing system hinder scaling to larger sizes, e. g. 20 object size with unlimited depth for desktop applications or TV. 3. SeeReals novel solution to real-time holography 3.1. Fundamental idea and overview The fundamental idea of our concept is fairly simple when considering holography even literally from an information point-of-view. All visual acuity is limited by the capabilities of the human eye, i. e. its angular and depth resolution, color and contrast sensitivity, numerical aperture, magnification, etc. where the characteristics of the eye may vary widely from individual from individual. It may additionally be confined by monochromatic and chromatic aberrations. The majority of optical instruments, such as visual microscopes or telescopes utilize the eye as the final element of the optical system. The eyes specific capabilities are thus taken into account in the optical system design. We view holography in the same way. When considering the human vision system regarding to where the image of a natural environment is received by a viewer, it becomes obvious that only a limited angular spectrum of any object reaches the retina. In fact, it is limited by the pupils aperture of some millimeters. If the positions of both eyes are known, it therefore would be wasteful to reconstruct a holographic scene or object that has an extended angular spectrum as it is common practice in classical holography. As mentioned above, in every part of a classic hologram the entire object information is encoded, cf. Figure 2. This means that a large viewing zone with parallax information within this zone exists by moving within this zone the viewer can look around the reconstructed object and thus sees different perspectives of the scene. This approach is historically explained by the interference-based exposure technique onto high-resolution holographic films and is useful for static holograms as known from artistic holographic recordings. The key idea of our solution to electro-holography is to reconstruct a limited angular spectrum of the wave field of the 3-D object, which is adapted laterally in size to about the humans eye entrance pupil, cf. Figure 4. That is, the highest priority is to reconstruct the wave field at the observers eyes and not the three-dimensional object itself. The designated area in the viewing plane, i. e. the virtual viewing window from which an observer can perceive the proper holographic reconstruction is located at the Fourier plane of the holographic display. It corresponds to the zero-order extension of the underlying SLM cross grating. The holographic code (i. e. the complex amplitude transmittance) of each scene point is encoded on a designated area on the hologram that is limited in size. This area in the hologram plane is called a sub-hologram. The position and size of the sub-hologram is defined by the position of object point and viewing window geometry. There is one sub-hologram per scene point, but owing to the diffractive nature of holography, sub-holograms of different object points may be overlapping. The complex amplitude transmittances of different sub-holograms can be added without any loss of information. Principle of viewing-window holography. With viewing-window holography the essential and proper holographic information exists at the eye positions only. So far, for the sake of simplicity, we have discussed the matter for a single viewing window, which carries the information for one eye only. But how is then parallax information generated Binocular view can be created by delivering different holographic reconstructions with the proper difference in perspective to left and right eye, respectively. For this, the techniques of spatial or temporal multiplexing can be utilized. For such a binocular-view multiplexed hologram, the reconstructed 3-D object can be seen from a single pair of viewing windows only. Advantageously, dynamic or real-time video holography offers an additional degree of freedom in system design with respect to temporal-multiplex operation. Given that the computational power is sufficient and the spatial light modulator is fast enough, the hologram can be updated quickly. By incorporating a tracking system, which detects the eye positions of one or more viewers very fast and precisely and repositions the viewing window accordingly, a dynamic 3-D holographic display can be realized that circumvents all problems involved with the classic approach to holography. The steering of the viewing window can be done in different ways, either by shifting the light source and thus shifting the image of the light source, or by placing an additional steering element close to the SLM that realizes a variable prism function. Selected implementations of steering principles will be explained in more detail in section 3.5. To summarize, the pillars of our holographic display technology are: Viewing-window holography: By limiting the information of the holographic reconstruction to the viewing windows, the required display resolution is decreased dramatically. Pixel sizes in the range of todays commercially available displays are sufficient. Real-time computation of sub-holograms: By limiting the encoding to sub-holograms, the computing requirements are greatly reduced. Sub-hologram encoding brings computation into graphics card or ASIC range. The principle also enables temporal color multiplexing, speckle reduction, and suppression of higher orders within the viewing window. Tracking of viewing windows: An active and real-time tracking of the viewing window allows a free movement of the observer. 3.2। The viewing-window and sub-hologram concept The optical principle of our holographic approach is schematically depicted in Figure 5. Coherent light coming from a point light source is imaged by a positive lens (L) into the observer plane and creates the spherical reference wave for hologram illumination. Very close to the imaging lens, the spatial light modulator (SLM) is positioned. 3.2.1. What is a viewing window The inherent regular SLM structure generates a diffraction pattern in the far field whose zero-order extension is the viewing window (VW) where the eye of the observer is located. Given small angles, the size of the viewing window is obtained from the grating equation and trigonometry to where the maximum allowable spatial frequency is given by the resolution of the spatial light modulator and must satisfy the relation (x) 1 2 x and (y) 1 2 y. क्रमशः। 3.3.2. Fourier-based modeling Figure 6 illustrates an alternative method for hologram synthesis that is based on fast Fourier transforms (FFT) of object planes. It shows a side view of a three-dimensional object or three-dimensional scene, the spatial light modulator (hologram), and the viewing window. The viewing window is positioned at or close to an observer eye. The 3-D-scene is located within a frustum that is defined by the edges of the viewing window and the SLM, respectively (drawn as red dashed lines in Figure 6 ). This frustum may be approximated by a pyramid if the viewing window is much smaller than the SLM. For calculation, the 3-D-scene is sliced in layers (L 1. . L m ) that are parallel with both the SLM and viewing-window plane. The continuously distributed object points are assigned to the closest layer. The extension of each layer is limited by the frustum and depends on the distance from the viewing window. With the approximation of the viewing window being much smaller than the SLM, the extension of a layer is proportional to its distance from the viewing window. FFT-based hologram synthesis. In each layer, the object points are assigned to the nearest sampling point of the layer. The calculation method uses Fresnel transforms between the object layers L 1. . L m . a reference layer L R in the observer plane and a hologram layer L H in the plane of the SLM. The calculation of a Fresnel transform can be mathematically performed as a Fourier transform and multiplication with quadratic phase factors (Goodman, 1996 ). The discrete Fourier transform can be efficiently executed by using the fast Fourier transform (FFT) algorithms. Hologram synthesis comprises three steps: Firstly, the layers L 1 to L m are transformed subsequently to the reference layer L R by m Fresnel-Transforms. Secondly, the wave fields calculated in the first step are summed up to a superimposed complex-valued wave field in the viewing window. This superimposed wave field represents the frequency-limited wave field that would be generated by a real existing 3-D scene. Thirdly, the superimposed wave field in the viewing window is back-transformed to the hologram layer L H by an inverse Fresnel transform. This yields finally the hologram function (x, y). The information in each layer is not continuous but sampled. It is essential that all object layers, the viewing window and the hologram layer L H contain the same number of sampling points N. This number corresponds to the pixel number of the spatial light modulator. As mentioned above, the extension of an object layer L m is proportional to its distance d m to the reference layer L R . Hence also the sampling interval p m in a layer is proportional to its distance d m to L R . i. e. p m d m . As a consequence, the periodicity interval w m in the reference layer L R is the same for all object layers L m . that is w m d m p m constant. This ensures that the periodicity interval in the L R has the same extension for all object layers. Therefore, a common viewing window that is located within one periodicity interval can be defined where the wave field within this viewing window is unique. As explained, in the third step the wave field in the viewing window is transformed to the hologram layer. The hologram layer and the reference layer are related by a direct or an inverse Fresnel transform. The number of sampling points N in each object layer is the same as in the layer L H on the SLM. As the viewing window is within one periodicity interval of an object layer, it is also within one periodicity interval of the L H or SLM. Hence, as the hologram reconstructs the wave field in the viewing window, this wave field will be unique therein. Periodic repetitions of this wave field that are inherent for sampled holograms are outside the viewing window. The hologram reconstructs the wave field that would be generated by a real existing 3-D scene in the viewing window. Disregarding reconstruction imperfections, an observer whose eyes are in one or two viewing windows will have the same perception as if the wave field emanates from a real existing object. Periodic repetitions of the reconstructed object are thus not visible. 3.4। Hologram encoding methods Hologram encoding refers to the representation of the complex wavefield at the hologram plane (x, y), i. e. to the process of converting the complex wavefield into a format, which can be displayed at the SLM by addressing its pixel. Hologram encoding is therefore directly related to the hardware implementation of the SLM. In synthetic or digital holography, a fully complex representation would be most qualified. But the major challenge is in finding a method and device to record a complex-valued hologram transmission function. Generally speaking, there are various possibilities for a spatially sampled representation of complex wavefields by spatial light modulators: Complex representation: A spatial light modulator that provides a full complex-valued modulation would be the ideal, whereas independent, non-coupled amplitude and phase addressing is mandatory. Although one can think of such SLM, which may implement the detour-phase principle for example, but thus far such devices are non-existent. Another possibility would be a sandwich of two active modulation layers, which are independently controlled for amplitude and phase modulation (Gregory et al. 1992 ). The challenge is then to put them together as close as possible to avoid cross talk. Both concepts seem difficult to realize even with todays enabling technologies. Decomposition methods: Since the very beginning of computational holography decomposition methods for complex-valued wavefields have been developed 1 - . Famous examples of holograms utilizing the detour-phase concept are those from Brown and Lohmann (Brown amp Lohmann, 1966 ), Lee (Lee, 1970 ), Burckhardt (Burckhardt, 1970 ) and the double-phase holograms from Hsueh and Sawchuck (Hsueh amp Sawchuk, 1978 ). All methods have in common that the hologram is divided into discrete resolution cells having apertures or stops of different size and position or having a certain number of sub-cells. That way both amplitude and phase quantities can be approximated. Originally developed for static holograms or holographic filters, those methods are also suited for implementation with spatial light modulators. However, to modulate both amplitude and phase two or more sub-pixels have to be combined to one macro-pixel. That means part of the light modulators original resolution has to be sacrificed for the sake of full holographic modulation. In the following subsections, two decomposition methods capable for SLM implementation are described in more detail. 3.4.1. Burckhardt amplitude encoding One method to decompose a complex-valued function is the method suggested by Burckhardt (Burckhardt, 1970 ), which is a simplified version of Lees original approach (Lee, 1970 ). One hologram cell is laterally divided into three amplitude-modulating sub-cells. The lateral shift between the sub-cells represents phase angles of 0. 120 and 240 and acts as a phase offset, similar to the detour-phase principle. In holograms of this type, a phasor is decomposed into three vectors that run parallel to exp(i0) 1, exp(i23) 0.5 and exp(i43) 0.5 . Since the phase values are already represented by the lateral displacement of the sub-cells, any complex amplitude transmittance Aexp(i) can be encoded in one macro-pixel. The laterally displaced sub-pixels have positive amplitude transparencies of A 1,A 2,A 3 . क्रमशः। Hence, H ( x. y ) A 1 ( x. y ) exp i 0 A 2 ( x. y ) exp i 2 3 A 3 ( x. y ) exp i 4 3 As a result, a fast phase-only LC panel can be used as light modulator. A pair of two pixels of a phase-only modulating SLM is then combined into a complex-valued macro pixel (Birch et al. 2000 ). Both pixel act as the intended complex-valued macro pixel only if light modulated by both pixel is superimposed. A physical combination of light modulated by two phase subpixels may be achieved by beam-combining micro-elements. The hologram is encoded by first normalizing the amplitudes of the complex amplitude transmittance in a range from 0 to 1 and then calculating the phase quantities 1 . 2 from the equations above. Because of its phase coding, the diffraction efficiency of dual-phase holograms is compared to Burckhardt-type holograms greatly increased to approx. 10. Again, only a single active layer is required for representing the entire hologram information. Since only two sub-pixels have to be combined to one macro-pixel a better sampling at the hologram plane is being present. 3.5. Tracking methods For a non-tracked viewing-window-type hologram, the reconstructed 3-D object could be seen from a single or pair of viewing windows only. However, SeeReals approach to dynamic holography is directly related to eye tracking. In case of a movement of the observers eyes, the observer window is tracked to the new eye position. Hence it is possible to reduce the size of a viewing window to the size of approximately an eye pupil. Two viewing windows, i. e. one for the left eye and one for the right eye, are always located at the positions of the observer eyes. But then, how to move the viewing window in the observer plane Advantageously, dynamic holography offers the additional freedom of temporal-multiplex operation. By incorporating a tracking system that detects the eye positions of one or more viewers very fast and precisely and repositions the viewing window accordingly, a dynamic 3-D holographic display can be realized. Thus, the viewing angle of the reconstructed object is beneficially enlarged while maintaining the moderate resolution of the spatial light modulator. Tracked viewing-window holography must therefore fulfill the following key functions: Detection of the current eye position in x, y, z and Means for shifting the observer window to this position. To realize the former task, the holographic displays developed by SeeReal are equipped with an eye position detection system composed of a stereo camera and an imaging processing means. Images from the observer having a different perspective are captured by two cameras as exemplary shown in Figure 9. Multi-threaded software that comprises of image processing, pattern recognition and artificial intelligence is working in a two step process. In a first step, the face of the observer is recognized within the captured image and afterwards the eyes are detected within the region of the face. Once the face is identified, only the eye detection algorithms have to be executed, which makes the entire recognition process much faster. The results obtained from left and right image of the stereo camera are then combined to a 3-D model that defines the position of the eyes in space. Figure 10. Images captured by the tracking cameras (left and right view of a stereo camera). The current system is capable to track simultaneously up to 4 viewers in real-time. We have developed different alternatives for the tracking means, two of them are explained here in more detail. The steering of the viewing window can be done for example by shifting the light source and thus shifting the image of the light source accordingly, or by placing an additional element close to the SLM that realizes a variable deflection. In the following, we discuss implementations of these alternatives. 3.5.1. Light-source shifting The first principle that was developed and implemented in prototypes is based on light source shifting. The optical principle is schematically sketched in Figure 10. By imaging through a lens, a shift of any light source in object space results in a shift of its image. Since the viewing window is located within the zero order of the spatial light modulator, the holographic reconstruction as can be viewed from the viewing window will be always correct. From a holographic way of thinking, this corresponds to an illumination of the hologram with a tilted reference wave. When a single lens is used, this method allows in principle for a tracking in x, y and z direction. However, there is a practical limit for x and y shifting because of the paraxial limit of the lens. A skew ray path introduces aberrations that, if too large, may deteriorate the holographic reconstruction quality. Although aberrations can be compensated by encoding means, a practical limit has been identified at approximately 10 . Figure 11. Schematic principle of the light source tracking method. The position of the light source does not have to be shifted mechanically. One possibility would be an active array with a large number of light sources only one of them switched on at the same time. Tracking would then be performed by switching between several light sources. Each light source position then corresponds to a distinct tracking position in the viewing plane. Another possibility is the use of a secondary light source. A secondary light source might be an activated pixel in an additional liquid crystal display (LCD) that is illuminated by a homogenous backlight. By activating a pixel at the desired position on the LCD, the light source can be shifted electronically without mechanical movement. Tracking by light-source shifting has been successfully implemented in the prototypes by using a homogenous backlight and an LCD-shutter panel, cf. section 4. For the prototypes however, not a single lens and a single (secondary) light source is used, but a matrix of simultaneously emitting light sources and lenses is utilized instead. For a large display a single lens wouldnt be a feasible solution because of its thickness, weight, costs and display compactness. The shutter pixels act as secondary light sources. By switching on different shutter pixel, the light source position can be changed. An LED array (primary light sources) is used for illuminating the shutter. Pitch of the lens array needs to be large compared to pixel pitch of the SLM such as to still have a certain number of pixels with coherent illumination. Light source tracking has been proven to be a reliable solution. On the other hand, it has also certain disadvantages. For example, the use of secondary light sources is not optimal in terms of light efficiency of the system. Also there may be illumination crosstalk by light from secondary sources passing the wrong lens of the lens array. This does not cause any problem in a single-user system but may be disadvantageous for a multi-user display. The most important drawback of light source tracking is the limitation of the tracking angle by aberrations. Large tracking angles put the need for an oblique optical path from the light source through the lens array. Aberrations may not necessarily degrade the reconstruction of single points, but might somewhat corrupt the observer window leading to vignetting effects in the reconstruction. While light source tracking may be well suited for a single user display with a tracking range of about 10. it is less practicable for multi-user displays and large tracking ranges, as needed for example for TV applications. 3.5.2. Steering of the reconstruction Since the capabilities of the previous tracking method are limited in terms of tracking range, alternative solutions that enable larger ranges have been developed. The conceptual design of a holographic display that steers the holographic reconstruction is shown in Figure 11. With a beam steering element placed at the front of the hologram display, the optical path from the light source to the SLM can be kept constant. As an advantage, the hologram is always illuminated by the same planar wavefront, which is ideal in terms of light efficiency and aberrations. The beam-steering element deflects the light after passing the SLM and directs the light toward the observer eyes. In addition to the prism function, it could realize a focusing function. There exist various promising approaches to nonmechanical beam steering, which are currently at different stages of development (McManamon et al. 2009). The challenge of such beam steering devices is that often both a large deflection angle and a large aperture of the deflector are required. Refractive solutions are thus not suitable because of the thickness a prism would have. But when the optical system operates at coherent or narrow-band light, diffractive approaches can be utilized. For a transmission grating with a local period of , the angle of the diffracted light is given by the grating equation sin m m sin i n where m is the diffraction order, the wavelength of light and in the angle of the incident light. Such variable diffractive gratings can be divided into two categories. Either a sawtooth-like grating is adjustable in its period, or in its blaze angle. The variable period grating most often operates at the first diffraction order (m 1) and the maximum steering angle is defined by the gratings smallest permissible period. The minimum period arises from diffraction efficiency requirements at a given angle as well as the addressing resolution of the grating. The steering up to the maximum angle is beneficially continuous. Variable blaze gratings on the other hand have a fixed period and diffract the light into the designated order by matching the blaze angle to the diffraction order m. Since the variable blaze grating type steers light only at discrete angles, an extra variable period grating stage is required for continuous steering between those angles. Figure 12. Schematic side-view of the steering-of-reconstruction principle. is the tracking angle and z is the focal length variation of the nonmechanical steering element. Light could for example be steered and focused by writing a phase function including a prism and focus term into a liquid crystal layer. The effective refractive index and hence the deflection angle is controlled by a voltage applied to electrodes at the cells. Embodiments as variable period grating as well as variable blaze gratings can be realized. Another steering or tracking concept for the holographic reconstruction is based on electrowetting. Electrowetting or exactly electrowetting on dielectrics (EWOD) (Beni et al. 1982. Berge amp Peseux, 2000 ) can be regarded as an electrostatic manipulation of liquids that enables to vary the wettability of a conducting liquid (Mugele amp Baret, 2005 ). The conductive liquid and an electrode are separated by a thin dielectric hydrophobic layer thus forming a parallel plate capacitor. By applying a voltage between the electrode and the conductive liquid, the droplet wets the hydrophobic dielectric. Without a voltage, the droplet returns to the dewetted state, i. e. to its initial contact angle 0 . Since the thin dielectric layer prevents the liquid from electrolysis, the process is highly reliable. Below a critical saturation threshold, the behavior of electrowetting-on-dielectrics can be well-predicted by the so-called electrowetting equation cos v cos r 0 2 t l a V 2 which can be derived from Lippmanns electrocapillary equation and Youngs equation for a three-phase contact line. In this equation, 0 is the initial contact angle at zero voltage, and t are the dielectric constant and the thickness of the dielectric layer, respectively, V is the applied voltage and la is the interfacial surface tension of the liquid-ambient (typically electrolyte-oil) interface. In recent years, electrowetting has been successfully applied to various optical applications such as varifocal lenses, amplitude-modulating displays and fiber coupler and switches. How electrowetting can be applied for realizing a liquid prism is illustrated in Figure 12 (Kuiper et al. 2005. Smith et al. 2006 ). At initial state with no voltage, the liquids form a curved meniscus, depending on the interfacial surface tensions between the liquids and the solid. Since here the sidewall is hydrophobically coated, the water-based electrolyte features a large initial contact angle of 0 gt 150 (Figure 12 left, L R 0 ). If a voltage difference is applied between the insulated sidewall electrode and the electrolyte, the contact angle of a conducting droplet can be decreased. At a certain voltage pair of equal voltages, the contact angle at both left and right electrode reaches 90 resulting in a flat meniscus (Figure 12 middle, L R 90 ). The light passing through such a cell will not be altered in its propagation direction. Prism functionality can be realized if the sum of left and right contact angle equals to 180 (Figure 12 right, L R 180. where L R ). Figure 13. Operation principle of an electrowetting prism. For simplicity and visualization, here only a prism with 1D-deflection capability (2 sidewall electrodes) has been drawn. A prism capable for 2D-deflection comprises of 4 sidewall electrodes. It is advantageous to minimize the size of the prisms to get faster response, because dynamic response scales with the volume density product of the used liquids. Therefore, the intended prism size is adapted to the pixel pitch of the SLM. Since the response time of electrowetting cells of that size are in the range of lt1 ms, time sequential tracking of several users becomes feasible. 3.6. Color holography As holography is based on diffraction and as diffraction is wavelength-dependent, the 3-D scene has to be separated in its color components. Usually, these are red, green and blue. Three holograms are computed (one for each color component) and the 3-D scene is reconstructed using three light sources with the corresponding wavelengths. There are several methods to combine the three holograms and the three light sources, for example: Spatial multiplexing. The red, green and blue holograms are spatially separated. For instance, they may be displayed on three separate SLMs that are illuminated by red, green and blue light sources. An arrangement of dichroic beamsplitters combines the output of the SLMs. The optical setup is bulky, above all for large displays. Temporal multiplexing. The red, green and blue holograms are displayed sequentially on the same SLM. The red, green and blue light sources are switched in synchronization with the SLM. Fast SLMs are required to avoid color flickering. 4. Implementations and prototypes Our holographic approach has been successfully demonstrated by prototypes having 20.1- inch diagonal 3 - . The prototypes are intended to demonstrate the key principles of our solution for large-sized real-time holography, i. e. viewing-window holography with sub-hologram encoding technique, cheap and interactive real-time computing, and the feasibility with common pixel sizes. However, it should be emphasized that the prototypes do not represent commercial solutions with a flat design and are not at all optimized in intensity and tracking performance. Although commercial solutions that fulfill the latter features have already been developed, they are not described in this section. Figure 14. Optical principle of the 20.1-inch holographic display prototype. Sizes and distances are not to scale. 4.1। General description of components The second generation of the direct view holographic display prototype (VISIO 20) comprises a grayscale amplitude-modulating liquid crystal panel (NEC NL256204AM15-01) with a 3 5 megapixel resolution at a pixel pitch of p x 156 m and p y 52 m, an operation frequency of 60 Hz with a relatively slow response time of 30 ms (Figure 14 ). The used 1D hologram encoding (here vertical-parallax only) is a common practice to further reduce bandwidth requirements and is well-suited for the given pixel arrangement and geometry. Figure 15. a) 20.1-inch direct view prototype (VISIO 20) and (b) photograph of a holographic reconstruction. The optical scheme of the prototype is depicted in Figure 13. An LED backlight consists of red, green and blue high-brightness LEDs emitting at wavelengths of 627 nm, 530 nm, and 470 nm, respectively. The spectral linewidth (FWHM) of 30nm provides sufficient temporal coherence. Light coming from the RGB-LED backlight is mostly blocked by a first LC display that acts as shutter or variable secondary light source array. Only those pixels that are switched on transmit the light, and thus a variable (secondary) line light source is realized having a spatial coherence corresponding to the pixel opening. A lenticular comprising approximately 60 horizontal cylindrical lenses is used for hologram illumination and for imaging the light sources into the viewing window. Each cylindrical lens is illuminated by a horizontal line light source. Furthermore, secondary line light sources and arrayed cylindrical lenses are aligned such that all light source images coincide onto the viewing window. In the SLM the sum of all complex amplitudes U n (x, y) is encoded by combining three amplitude-modulating pixels for each complex value according to the Burckhardt-encoding scheme described above (cf. section 3.4). Two viewing windows delivering slightly different holographic perspectives of the scene are generated by a vertically aligned lenticular beam-splitter and an interlaced (horizontally multiplexed) hologram. High-precision user tracking is realized by a stereo camera incorporated in the holographic display and advanced eye recognition algorithms combined with active light source shifting by the shutter panel. 4.2। Color implementation In the prototypes, holographic reconstruction is performed either in monochrome (optionally R, G, or B) or in full-color. Two types of full-color holographic displays have been realized that are based on either a temporal or a spatial multiplexing of colors (Hussler et al. 2009 ). At the system for which temporal color multiplexing is implemented, the colors are displayed sequentially. The SLM displays the holograms of the red, green and blue 3-D scene components one after the other where the backlight is switched between red, green and blue LEDs. Both processes are synchronized. However, two obstacles have to be taken into account to achieve good reconstruction quality: The pixels of the SLM have a finite response time. For a LCD, this is the time the liquid crystals need to align to the electric field applied to the pixel cell. The LCD panel that we use as SLM stems from a medical LCD and has a long response time t on t off of typically 30 ms. The pixels do not switch simultaneously across the SLM as the pixels are addressed in columns and rows. The rows of the SLM are addressed sequentially, with one frame period needed from the first to the last row. As a consequence, there is a time lag of up to one frame period across the SLM. Both effects have to be taken account as each part of the hologram has to be illuminated with the corresponding wavelength. For instance, if SLM and backlight were switched from red to blue simultaneously, the last rows of the SLM would still display the red hologram when the backlight is already switched to blue. Therefore, we used a scanning backlight and a time lag between switching the SLM and the backlight. Figure 15 illustrates this process. Figure 16. State of SLM rows (top) and backlight rows (bottom) versus time. The SLM graph illustrates the effect of finite response time and row-by-row addressing of the SLM after switching from one hologram to the next hologram. The backlight graph shows delayed and row-by-row switching of the backlight to compensate these effects. The top graph shows the states of the SLM rows versus time and the bottom graph the states of the backlight rows versus time. The gradual color transition along the time axis of the SLM graph illustrates the finite response time after switching from a hologram of one color component to the hologram of the next color component. There is no sharp transition from one hologram to the next hologram but an intermediate interval in which the pixels of the SLM transit to the next state. The color transition along the row axis of the SLM graph illustrates that the SLM is addressed row-by-row. At a point in time at which the last row has just received the data of the current frame, the first row will already receive the data of the next frame. As an example, at the second dotted vertical line, the last row has just settled to the red hologram, whereas the first row already starts to transit to the green hologram. The intermediate states are indicated by the slanted gradual color transition. At these points in time, the state of the respective SLM pixel is undefined, and illumination by the backlight has to be avoided. Therefore, we built a scanning backlight in which the rows of LEDs are grouped in 16 groups. Switching of these groups is illustrated in the backlight graph of Figure 15. These groups are switched on and off sequentially such that the corresponding parts of the hologram are only illuminated if its pixels are in a settled state of the associated color. A complete cycle comprises three frames with colors red, green and blue and three intermediate transition frames. As the frame rate of the SLM is 60 Hz, the full-color frame rate is 10 Hz. The human vision perceives a full-color holographic reconstruction, albeit with color flickering. Color flickering will disappear and a steady reconstruction will be visible with availability of faster SLMs. In contrast, the display with spatial color multiplexing shows the three backlight colors and the three holograms for red, green and blue color components simultaneously. The three holograms are interlaced on the same SLM. A color filter is used to achieve that each hologram is illuminated with its associated wavelength only. Six holograms are interlaced on the SLM: three red, green and blue holograms that generate the viewing window for the left eye VW L and also three holograms to generate that for the right eye VW R . A beam-splitting lenticular is used to separate the light for left and right viewing window, VW L and VW R . Color filters are used to separate the wavelengths. Figure 16 illustrates top views of two possible arrangements of color filters. The left arrangement uses color filters that are integrated in the SLM pixels. One lens of the beam-splitting lenticular is assigned to two pixels of the SLM. The light of all left pixels at the lenses coincides in the observer plane and generates VW R . Vice versa the right pixels generate VW L . The color filters are arranged in columns such that each column of the filter extends over two columns of the SLM, as illustrated in the left graph of Figure 16. Such an arrangement of color filters integrated in the SLM pixels and two neighboring pixels having the same color is not commercially available. Standard LCD panels have color filters with color changing from pixel to pixel. An external color filter laminated on the cover glass of the panel would have a disturbing separation between pixel and color filter. Therefore, in our prototype we used the arrangement illustrated in the right graph of Figure 16. The color filters are attached directly to the structured surface of the beam-splitting lenticular. This arrangement avoids a disturbing separation between lenticular and color filter and facilitates tracked viewing windows in the same way as with a monochrome display. The functional principle is analog to that of the arrangement in the left graph of Figure 16 . Figure 17. Top view of an arrangement of color filters in a holographic display with spatial color multiplexing. The left graph shows color filters integrated in the SLM pixels (SLM CF) and the right graph separate color filters (CF). The graphs show three lenses of the positive lenticular (L) that splits the light to generate left viewing window (VW L ) and right viewing window (VW R ). For simplification, only the light illuminating VW R is shown and the light illuminating VW L is omitted. The light sources and the Fourier-transforming lenses are not shown. 5. Conclusions In conclusion, a novel approach for real-time holography that has a strong market potential for desktop, TV, as well as mobile displays has been presented. To date, it is the only practical solution known to the authors that is capable of holographic reconstruction of large 3-D scenes of natural size and depth made with commercially available component technologies. The essential idea of the proprietary and patented approach is that for a holographic display the highest priority is to reconstruct the wavefront at the eye position that would be generated by a real existing object and not to reconstruct the object itself. The tracked viewing-window holographic technology limits pixel size to levels already known for commercially available displays. Sub-hologram encoding brings computation into graphics card or ASIC range. The new concept is applicable to desktop, TV, and mobile imaging. While there have been impressive developments in 3-D display technology in the past decade, the remaining visual conflicts between natural viewing and 3-D stereo visualization have prevented 3-D displays from becoming a universal consumer product. In principle, the only 3-D display capable of completely matching natural viewing is an electro-holographic display. SeeReals new approach to electro-holography not only proves that it is possible, but that it is also closer to adoption than many experts imagined. The principles and concepts are already in place. The checks and verifications are completed. Color prototypes are in full use. The technology already exists it is just a question of time for all the pieces of the puzzle to come together and for the first commercial real-time 3-D holographic displays to hit the market. References 1 - G. Beni, S. Hackwood, J. L. Jackel, 1982 Continuous electrowetting effect, Applied Physics Letters 40 10 912 914. URL: link. aip. orglinkAPL409121 2 - S. A. Benton, 1969 Hologram reconstructions with extended incoherent sources, J. Opt. समाज। Am। 59: 1545. 3 - S. A. Benton, V. M. Bove, 2008 Holographic Imaging, John Wiley and Sons. 4 - S. A. Benton, H. S. Mingace, J. 1970 Silhouette holograms without vertical parallax, Appl. Opt. 9 12 2812 2813. URL: ao. osa. orgabstract. cfmURIao-9-12-2812 5 - B. Berge, J. Peseux, 2000 Variable focal lens controlled by an external voltage: an application of electrowetting, Eur. भौतिकी। J. E 3 159 163. 6 - P. M. Birch, R. Young, D. Budgett, C. Chatwin, 2000 Two-pixel computer-generated hologram with a zero-twist nematic liquid-crystal spatial light modulator. Opt. लेट्ट। 25 14 1013 1015. URL: ol. osa. orgabstract. cfmURIol-25-14-1013 7 - B. R. Brown, A. W. Lohmann, 1966 Complex spatial filtering with binary masks, Appl. Opt. 5 6 967 969. URL: ao. osa. orgabstract. cfmURIao-5-6-967 8 - C. B. Burckhardt, 1970 A Simplification of Lees Method of Generating Holograms by Computer, Appl. Opt. 9 8 1949 1949 URL. ao. osa. orgabstract. cfmURIao-9-8-1949 9 - D. C. Chu, J. W. Goodman, 1972 Spectrum shaping with parity sequences, Appl. Opt. 11 8 1716 1724. URL: ao. osa. orgabstract. cfmURIao-11-8-1716 10 - D. Gabor, 1948 A new microscopic principle, Nature 161 777 778. 11 - J. W. Goodman, 1996 Introduction to Fourier Optics, 2nd edn, McGraw-Hill, New York. 12 - D. A. Gregory, J. C. Kirsch, E. C. Tam, 1992 Full complex modulation using liquid-crystal televisions, Appl. Opt. 31 2 163 165URL: ao. osa. orgabstract. cfmURIao-31-2-163. 13 - R. Hussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, A. Schwerdtner, 2009 Large real-time holographic displays: from prototypes to a consumer product, 7237 SPIE, 72370S URL: link. aip. orglinkPSI723772370S1 14 - D. M. Hoffman, A. R. Girshick, K. Akeley, M. S. Banks, 2008 Vergence-accommodation conflicts hinder visual performance and cause visual fatigue, J. Vis. 8 3 1 30 URL: journalofvision. org8333. 15 - C. K. Hsueh, A. A. Sawchuk, 1978 Computer-generated double-phase holograms, Appl. Opt. 17 24 3874 3883. URL: ao. osa. orgabstract. cfmURIao-17-24-3874 16 - Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, T. Sugie, 2009 Horn-6 special-purpose clustered computing system for electroholography, Opt. Express 17 16 13895 13903. URL: opticsexpress. orgabstract. cfmURIoe-17-16-13895 17 - S. Kuiper, B. H. W. Hendriks, R. A. Hayes, B. J. Feenstra, J. M. E. Baken, 2005 Electrowetting-based optics, 5908 SPIE, 59080R URL: link. aip. orglinkPSI590859080R1 18 - W. H. Lee, 1970 Sampled fourier transform hologram generated by computer, Appl. Opt. 9 3 639 643. URL: ao. osa. orgabstract. cfmURIao-9-3-639 19 - A. W. Lohmann, 1967 The space-bandwidth product, applied to spatial filtering and holography, Research Paper RJ-438 (IBM San Jose Research Laboratory, San Jose, Calif.) 1 23. 20 - A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, 1996 Spacebandwidth product of optical signals and systems, J. Opt. समाज। Am। A 13 3 470 473. URL: josaa. osa. orgabstract. cfmURIjosaa-13-3-470 21 - M. E. Lucente, P. St-Hilaire, S. A. Benton, D. Arias, J. A. Watlington, 1993 New approaches to holographic video, 1732 SPIE, 377 386 URL: link. aip. orglinkPSI17323771. 22 - K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, T. Honda, 1996 Electro-holographic display using 15mega pixels lcd, 2652 SPIE, 15 23 URL: link. aip. orglinkPSI2652151. 23 - P. F. Mc Manamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, E. A. Watson, 2009 A review of phased array steering for narrow-band electrooptical systems, Proceedings of the IEEE 97 6 1078 1096. 24 - F. Mugele, J. C. Baret, 2005 Electrowetting: from basics to applications, Journal of Physics: Condensed Matter 17(28): R705 - R774. URL: stacks. iop. org0953-898417R705 25 - S. Reichelt, R. Hussler, N. Leister, G. Ftterer, A. Schwerdtner, 2008 Large Holographic 3D Displays for Tomorrows TV and Monitors - Solutions, Challenges, and Prospects, Proceedings of the IEEE LEOS Annual Conference. (invited). 26 - D. Schreier, 1984 Synthetische Holografie, Physik-Verlag, Weinheim. 27 - A. Schwerdtner, R. Hussler, N. Leister, 2007 A new approach to electro-holographic displays for large object reconstructions, Adaptive Optics: Analysis and Methods Computational Optical Sensing and ImagingInformation PhotonicsSignal Recovery and Synthesis Topical Meetings on CD-ROM, Optical Society of America, PMA5 URL: opticsinfobase. orgabstract. cfmURIURIDH-2007-PMA5 28 - A. Schwerdtner, N. Leister, R. Hussler, 2007 A new approach to electro-holography for TV and projection displays, SID-Proc. 32 33. 29 - C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, P. J. Watson, 2004 Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3d visualization, 5290 SPIE, 27 41 URL: link. aip. orglinkPSI5290271. 30 - D. E. Smalley, Q. Y. J. Smithwick, V. Michael, J. Bove, 2007 Holographic video display based on guided-wave acousto-optic devices, 6488 SPIE, 64880L URL: link. aip. orglinkPSI648864880L1 31 - N. R. Smith, D. C. Abeysinghe, J. W. Haus, J. Heikenfeld, 2006 Agile wide-angle beam steering with electrowetting microprisms, Opt. Express 14 14 6557 6563. URL: opticsexpress. orgabstract. cfmURIoe-14-14-6557 32 - P. St-Hilaire, S. A. Benton, M. Lucente, 1992 Synthetic aperture holography: a novel approach to three-dimensional displays, J. Opt. समाज। Am। A 9 11 1969 1977. URL: josaa. osa. orgabstract. cfmURIjosaa-9-11-1969 33 - P. St-Hilaire, S. A. Benton, M. E. Lucente, J. D. Sutter, W. J. Plesniak, 1993 Advances in holographic video, 1914 SPIE, 188 196 URL: link. aip. orglinkPSI19141881. 34 - M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. G. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, C. W. Slinger, 2003 100-megapixel computer-generated holographic images from active tiling: a dynamic and scalable electro-optic modulator system, 5005 SPIE, 247 258 URL: link. aip. orglinkPSI50052471. 35 - H. Stolle, R. Hussler, 2008 A new approach to electro-holography: Can this move holography into the mainstream. Information Display 2 4. 36 - S. Tay, P. Blanche, A. R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St-Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, N. Peyghambarian, 2008 An updatable holographic three-dimensional displayNature URL: dx. doi. org10.1038 37 - N. Peyghambarian, (2008). An updatable holographic three-dimensional display. Nature. URL: 451 7179 694 698. dx. doi. org10.1038nature0659606596 38 - C. Wheatstone, 1838 On some remarkable, and hitherto unobserved, phenomena of binocular vision, Philosophical Transactions of the Royal Society of London 128 371 394.

No comments:

Post a Comment